Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Clinical eHealth ; 2022.
Article in English | ScienceDirect | ID: covidwho-1936135

ABSTRACT

Background The outbreak of coronavirus disease 2019 (COVID-19) has become a global pandemic acute infectious disease, especially with the features of possible asymptomatic carriers and high contagiousness. Currently, it is difficult to quickly identify asymptomatic cases or COVID-19 patients with pneumonia due to limited access to reverse transcription-polymerase chain reaction (RT-PCR) nucleic acid tests and CT scans. Goal This study aimed to develop a scientific and rigorous clinical diagnostic tool for the rapid prediction of COVID-19 cases based on a COVID-19 clinical case database in China, and to assist doctors to efficiently and precisely diagnose asymptomatic COVID-19 patients and cases who had a false-negative RT-PCR test result. Methods With online consent, and the approval of the ethics committee of Zhongshan Hospital Fudan University (NCT04275947, B2020-032R) to ensure that patient privacy is protected, clinical information has been uploaded in real-time through the New Coronavirus Intelligent Auto-diagnostic Assistant Application of cloud plus terminal (nCapp) by doctors from different cities (Wuhan, Shanghai, Harbin, Dalian, Wuxi, Qingdao, Rizhao, and Bengbu) during the COVID-19 outbreak in China. By quality control and data anonymization on the platform, a total of 3,249 cases from COVID-19 high-risk groups were collected. The effects of different diagnostic factors were ranked based on the results from a single factor analysis, with 0.05 as the significance level for factor inclusion and 0.1 as the significance level for factor exclusion. Independent variables were selected by the step-forward multivariate logistic regression analysis to obtain the probability model. Findings We applied the statistical method of a multivariate regression model to the training dataset (1,624 cases) and developed a prediction model for COVID-19 with 9 clinical indicators that are accessible. The area under the receiver operating characteristic (ROC) curve (AUC) for the model was 0.88 (95% CI: 0.86, 0.89) in the training dataset and 0.84 (95% CI: 0.82, 0.86) in the validation dataset (1,625 cases). Discussion With the assistance of nCapp, a mobile-based diagnostic tool developed from a large database that we collected from COVID-19 high-risk groups in China, frontline doctors can rapidly identify asymptomatic patients and avoid misdiagnoses of cases with false-negative RT-PCR results.

2.
Front Immunol ; 13: 843342, 2022.
Article in English | MEDLINE | ID: covidwho-1903004

ABSTRACT

Uncontrolled severe acute respiratory syndrome-coronavirus (SARS-CoV)-2 infection is closely related to disorders of the innate immune and delayed adaptive immune systems. Dendritic cells (DCs) "bridge" innate immunity and adaptive immunity. DCs have important roles in defending against SARS-CoV-2 infection. In this review, we summarize the latest research concerning the role of DCs in SARS-CoV-2 infection. We focus on the complex interplay between DCs and SARS-CoV-2: pyroptosis-induced activation; activation of the renin-angiotensin-aldosterone system; and activation of dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin. We also discuss the decline in DC number, the impaired antigen-presentation capability, and the reduced production of type-I interferon of DCs in severe SARS-CoV-2 infection. In addition, we discuss the potential mechanisms for pathological activation of DCs to understand the pattern of SARS-CoV-2 infection. Lastly, we provide a brief overview of novel vaccination and immunotherapy strategies based on DC targeting to overcome SARS-CoV-2 infection.


Subject(s)
COVID-19/immunology , Dendritic Cells/immunology , SARS-CoV-2 , Animals , Humans
3.
Front Immunol ; 13: 796682, 2022.
Article in English | MEDLINE | ID: covidwho-1731771

ABSTRACT

In the ongoing coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), natural killer T (NKT) cells act as primary initiators of immune responses. However, a decrease of circulating NKT cells has been observed in COVID-19 different stages, of which the underlying mechanism remains to be elucidated. Here, by performing single-cell RNA sequencing analysis in three large cohorts of COVID-19 patients, we found that increased expression of Tim-3 promotes depletion of NKT cells during the progression stage of COVID-19, which is associated with disease severity and outcome of patients with COVID-19. Tim-3+ NKT cells also expressed high levels of CD147 and CD26, which are potential SARS-CoV-2 spike binding receptors. In the study, Tim-3+ NKT cells showed high enrichment of apoptosis, higher expression levels of mitochondrial genes and caspase genes, with a larger pseudo time value. In addition, Tim-3+ NKT cells in COVID-19 presented a stronger capacity to secrete IFN-γ, IL-4 and IL-10 compared with healthy individuals, they also demonstrated high expression of co-inhibitory receptors such as PD-1, CTLA-4, and LAG-3. Moreover, we found that IL-12 secreted by dendritic cells (DCs) was positively correlated with up-regulated expression of Tim-3 in NKT cells in COVID-19 patients. Overall, this study describes a novel mechanism by which up-regulated Tim-3 expression induced the depletion and dysfunction of NKT cells in COVID-19 patients. These findings not only have possible implications for the prediction of severity and prognosis in COVID-19 but also provide a link between NKT cells and future new therapeutic strategies in SARS-CoV-2 infection.


Subject(s)
COVID-19/immunology , Hepatitis A Virus Cellular Receptor 2/immunology , Natural Killer T-Cells/immunology , SARS-CoV-2/immunology , Humans , Interferon-gamma/immunology , Interleukin-10/immunology , Interleukin-4/immunology , Signal Transduction/immunology
4.
Pathogens ; 10(5)2021 May 11.
Article in English | MEDLINE | ID: covidwho-1224097

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), has been recently considered a systemic disorder leading to the procoagulant state. Preliminary studies have shown that SARS-CoV-2 can infect endothelial cells, and extensive evidence of inflammation and endothelial dysfunction has been found in advanced COVID-19. Endothelial cells play a critical role in many physiological processes, such as controlling blood fluidity, leukocyte activation, adhesion, platelet adhesion and aggregation, and transmigration. Therefore, it is reasonable to think that endothelial dysfunction leads to vascular dysfunction, immune thrombosis, and inflammation associated with COVID-19. This article summarizes the association of endothelial dysfunction and SARS-CoV-2 infection and its therapeutic strategies.

5.
Mathematical Problems in Engineering ; : 1-6, 2021.
Article in English | Academic Search Complete | ID: covidwho-1021165

ABSTRACT

There is still a lack of effective therapies for treating SARS-CoV-2-infected patients, as doubts remain whether antibodies provide sufficient immunity for COVID-19, and the safety of vaccines under development needs further study. The treatment of coronavirus from the perspective of RNA interference-based gene therapy offers a more direct approach to combating viral genes in addition to traditional drugs and vaccines and is likely to have a promising future. In this paper, an analysis of the emerging patent landscape was given on gene therapies for coronavirus under development, highlighting patent applications' basic status, geographical distribution, time-series analysis of new inventors, and ranking of patent applicants. Relevant patents were also reviewed and summarized to provide ideas for the control of the current COVID-19 pandemic. [ABSTRACT FROM AUTHOR] Copyright of Mathematical Problems in Engineering is the property of Hindawi Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

6.
Non-conventional in Spanish | WHO COVID | ID: covidwho-245348

ABSTRACT

Epidemics are a big threat to world health. The ongoing pandemic of corona virus disease 2019 (COVID-19) has caused a series of challenges to public health. One such challenge is the management of chronic diseases such as epilepsy during an epidemic event. Studies on this topic are rather limited and the related medical practice is full of uncertainty. Here we review recent development of potential approaches for epilepsy control during an epidemic and propose a new three-level management framework to address these challenges.

SELECTION OF CITATIONS
SEARCH DETAIL